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Coupled-cluster treatment of theXY -model

D J J Farnell, S E Kr̈uger† and J B Parkinson
Department of Physics, UMIST, PO Box 88, Manchester M60 1QD, UK

Received 21 March 1997

Abstract. We study quantum spin systems in the 1D, 2D square and 3D cubic lattices with
nearest-neighbourXY -exchange. We use the coupled-cluster method (CCM) to calculate the
ground-state energy, theT = 0 sublattice magnetization and the excited-state energies, all as
functions of the anisotropy parameterγ . We consider the case withS = 1/2 in detail and give
some results for higherS. In 1D these results are compared with the exactS = 1/2 results and
in 2D with Monte Carlo and series expansions. We obtain critical points close to the expected
valueγ = 0 and our extrapolated LSUBn results for the ground-state energy are well converged
for all γ except very close to the critical point.

1. Introduction and the coupled-cluster-method formalism

In this paper we consider theT = 0 properties of the quantum spin system known as the
XY -model, described by the Hamiltonian

H = 1

2

∑
l,p

[(1+ γ )sxl sxl+p + (1− γ )syl syl+p] in the region 06 γ 6 1 (1)

where indexl runs over allN lattice sites with periodic boundary conditions, andp over
the z nearest-neighbour sites.

For s = 1/2 and 1D, this model was solved exactly by Liebet al (1961) and its
properties have been studied by many authors (see Niemeyer (1967) and Barouch and
McCoy (1971), for example). For higher spin in 1D or in 2D (square) and 3D (simple
cubic), useful results have been obtained using spin-wave theory (Zhenget al 1991), Monte
Carlo methods (Ding 1992, Zhang and Runge 1992), series expansions (Hameret al 1991)
and, forγ = 0, finite-size extrapolations (Bettset al 1996).

In a recent paper (Bishopet al (1996), referred to as I), the coupled-cluster method
(CCM) was applied to theXXZ-model in the|1| < 1 regime. It was found that good
results could be obtained by using aplanar model state in which the spins are aligned in
the xy-plane, as in the classical ground state, rather than along thez-axis. Here we shall
use a similar model state for (1), again motivated by the classical ground state.

For a description of the CCM applied to spin systems, see Bishopet al (1991) and also
the references given in I. To calculate the ground-state wave function|9〉 of a spin system,
we start with amodel state|8〉 and acorrelation operatorS such that

|9〉 = eS |8〉.
† Permanent address: Institut für Theoretische Physik, Universität Magdeburg, PO Box 4120, D-39016 Magdeburg,
Germany.
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For the Hamiltonian (1), we expect that in the ground state the spins are aligned in the
xy-plane. We choose|8〉 to be a Ńeel state with spins aligned parallel and antiparallel to
the x-axis. In 1D this has the form

|8〉 = | · · · ←− −→ ←− −→ ←− −→ ←− −→ ←− −→ · · ·〉.
It is useful to introducelocal axessuch that each spin in|8〉 is pointing in the negative

z-direction, by means of the following transformation:

sx →−sz, sy → sy, sz → sx left-pointing spins

sx → sz, sy → sy, sz →−sx right-pointing spins.

Thus (1) becomes (withs± = sx ± isy)

H = 1

2

∑
l,p

[Aszl s
z
l+p + B(s+l s+l+p + s−l s−l+p)+ C(s+l s−l+p + s−l s+l+p)] (2)

with

A ≡ −(1+ γ ) B ≡ −1

4
(1− γ ) C = −B.

For the correlation operatorS we choose a linear combination of creation operators
relative to|8〉, a creation operator being any combination of spin-raising operators (s+ in
the local axes). Because of the form of (2), the total number of spin flips in each creation
operator must be even.

The simplest possible choice forS is to flip two spins, known as the SUB2 approximation
scheme:

S =
N∑
l=1

(
1

2

∑
r

brs
+
l s
+
l+r

)
(3)

wherer runs over all distinct lattice vectors (r 6= 0 for s = 1/2).
The full SUB4 scheme involves four-flip configurations as well as two-flip ones, and is

too complicated to handle in general. However, the most important extra term is the one
with four flips on adjacent sites. Including this term gives the SUB2+ LSUB4 scheme,
which we have applied only in 1D:

S =
N∑
l=1

(
1

2

∑
r

brs
+
l s
+
l+r + g4s

+
l s
+
l+1s

+
l+2s

+
l+3

)
. (4)

A third approximation scheme is to include inS all possible combinations of spin flips
within a region of sizen, known as the LSUBn scheme. This is particularly useful for
numerical extrapolation as a function ofn, and will be discussed in detail in section 5.

From the Schr̈odinger equationH |9〉 = E|9〉, we obtain the equation for the ground-
state energy:

E = 〈8|e−SHeS |8〉 = 1

2
zN

(
1

4
A+ b1B

)
. (5)

This equation is exact whatever approximations are made forS.
To determine the coefficientsbr andg4 in the SUB2+ LSUB4 scheme, we operate on

the Schr̈odinger equation with exp(−S), then with one of the destruction operators and then
with 〈8|:

〈8|s−l s−l+re−SHeS |8〉 =
∑
p

[
B
∑
r ′
br ′br−r ′+p − (A+ 4Bb1)br
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+ 2Cbr−p + (B(2b2
1 + 2g4+ 1)+ Ab1)δp,r + Bg4δ3p,r

]
= 0 (6)

〈8|s−l s−l+1s
−
l+2s

−
l+3e−SHeS |8〉 = A(b2

1 + 3b2
2 + 2b1b3)− 4B(b1b2b4+ b1b

2
3 + b2

2b3)

− 4C(2b1b2+ b2b3)+ g4[B(2b5− 2b3− 8b1)− A] = 0. (7)

The corresponding equations for the SUB2 scheme are obtained by settingg4 = 0
everywhere in the first of these and ignoring the second.

These couplednon-linearequations are solved by first Fourier transforming equation (6)
and then solving the resulting equations and equation (10) self-consistently. For dimension
d we obtain

0(q) ≡
∑
r

eirqbr br =
∫ π

−π
ddq (2π)−de−irq0(q) γ (q) = 1

z

∑
p

eipq

b1 =
∫ π

−π
ddq (2π)−dγ (q)0(q) X1 ≡

∑
r

brbr+p =
∫ π

−π
ddq (2π)−dγ (q)02(q)

leading to

a02(q)+ b0(q)+ c = 0

where

a ≡ Bγ (q) b ≡ −A− 4Bb1+ 2Cγ (q)

c ≡ [B(2b2
1 + 2g4+ 1)+ Ab1)]γ (q)+ Bg4γ (3q)− BX1− 2Cb1

with the usual solution

0(q) = −b +
√
b2− 4ac

2a
.

The equations can now be solved numerically in a self-consistent way.

Table 1. The ground-state energy and sublattice magnetization for the one-dimensionalXY -
model atγ = 0 compared to exact results of McCoy (1968).Nf indicates the number of
fundamental configurations for a given LSUBn approximation level.

LSUBn Nf Eg/N M

LSUB2 1 −0.303 813 0.837 286
SUB2 — −0.310 377 0.779 517
LSUB4 4 −0.314 083 0.722 916
LSUB6 13 −0.316 301 0.660 064
LSUB8 43 −0.317 137 0.617 624
LSUB10 151 −0.317 542 0.586 067
LSUB∞ — −0.318 29 —
Exact — −0.318 310 0.0

Results for the ground-state energy obtained using the SUB2 and SUB2+ LSUB4
approximation schemes are shown in figures 1 and 2, and tables 1 and 2 for 1D and 2D.
The LSUBn results are discussed in section 5.

A notable feature of the CCM is the existence of terminating points as a function of
γ . These are believed to correspond to the actualT = 0 phase changes, known to be at
γ = 0 in 1D and believed also to be atγ = 0 on symmetry grounds for 2D and 3D. In
1D, terminating points only occur if correlations of infinite range are explicitly included in
S and occur atγ = −0.107 89 in SUB2 and atγ = −0.096 05 in SUB2+ LSUB4. In 2D,
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Table 2. The ground-state energy and sublattice magnetization for the square-latticeXY -model
at γ = 0 compared to series expansion calculations of Hameret al (1991). Nf indicates the
number of fundamental configurations for a given LSUBn approximation level, and also shown
are the critical values ofγ for the anisotropic model—where the value in parentheses is the
estimated error in the final decimal place shown.

LSUBn Nf Eg/N M γc(n)

LSUB2 1 −0.540 312 0.949 634 —
SUB2 — −0.546 325 0.918 953−0.030(1)
LSUB4 10 −0.547 267 0.915 768−0.175(1)
LSUB6 131 −0.548 329 0.901 357−0.073(1)
LSUB8 2793 −0.548 616 0.893 665−0.04(1)
LSUB∞ — −0.548 92 0.869 0.00(1)
Series expansion — −0.5488 0.872 0.0

Figure 1. Results for the CCM ground-state
energy of the one-dimensionalXY -model. The
terminating points of the SUB2 and SUB2+
LSUB4 schemes are indicated.

Figure 2. Results for the CCM ground-state sublattice
magnetization of the one-dimensionalXY -model.

there is a terminating point atγ = −0.030 33 in SUB2. These values are reasonably close
to γ = 0 considering the simple nature of these approximations.

In 2D and 3D, terminating points can also occur within the LSUBn scheme as described
in section 5.
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2. In-plane sublattice magnetization

In the CCM the bra ground state is not in general the Hermitian conjugate of the ket state.
Instead we introduce a new operatorS̃ such that

〈9̃| = 〈8|S̃ exp(−S).
The SUB2+ LSUB4 approximation forS̃ is

S̃ = 1+
N∑
l=1

(
1

2

∑
r

b̃r s
−
l s
−
l+r + g̃4s

−
l s
−
l+1s

−
l+2s

−
l+3

)
(8)

wherer runs over all distinct lattice vectors (withr 6= 0 for s = 1/2).
The bra-state equations are found variationally by taking the partial derivatives of

H̄ = 〈9̃|H |9〉
with respect to the ket-state coefficients. By CCM theory (Bishopet al 1991) these
derivatives must be equal to 0. Hence we obtain two bra-state equations:

∂H̄

∂br
= N

∑
p

[
2B

∑
r ′
b̃r ′br ′−r+p − (A+ 4Bb1)b̃r + 2Cb̃r−p

+ (B + (A+ 4Bb1)b̃1− 4B
∑
r ′
b̃r ′br ′)δp,r

+ (g̃4/2){[4A(b1+ b3)− 8B(b2b4+ b2
3)− 16Bg4− 16Cb2]δp,r

+ [12Ab2− 8B(b1b4+ 2b2b3)− 8C(2b1+ b3)]δ2p,r

+ [4Ab1− 8B(2b1b3+ b2
2)− 4Bg4− 8Cb2]δ3p,r

− 8Bb1b2δ4p,r + 4Bg4δ5p,r}
]
= 0 (9)

∂H̄

∂g4
= N [B(2b̃1+ b̃3)+ g̃4(2B(b5− b3− 4b1)− A)] = 0. (10)

Again we perform a Fourier transform on equation (9), and the resulting equations and
equation (10) may be solved self-consistently in order to obtain the bra-state correlation
coefficients.

Finally the results are used to calculate the magnetization using the formula for SUB2:

M = −2〈9̃|szl |9〉 = 1− 2
∑
r

b̃rbr

and for SUB2+ LSUB4:

M = −2〈9̃|szl |9〉 = 1− 2
∑
r

b̃rbr − 8g4g̃4.

3. Excitations

A similar method can be used for the excited-state energies, introducing the operator

X1 =
∑
i

Xi s+i i belongs to one sublattice only

leading to

〈8|s−l e−S [H,X1]eS |8〉 = −1

2
z(A+ 4Bb1)Xl + B

∑
r,p

brXl+r+p = εlXl (11)
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and hence, via Fourier transformation,

⇒ ε(q) = −1

2
z(A+ 4Bb1)+ Bzγ (q)0(q). (12)

4. General spins (SUB2 only)

We have also considered the general case ofs > 1/2 within the SUB2 approximation
scheme. The main features are as follows.

The correlation operatorsS and S̃ are the same as before (withoutg4). The ket-state
equations become

〈8|s−l s−l+re−SHeS |8〉 = 4s2
∑
p

[
4s2B

∑
r ′
br ′br−r ′+p − 2s(A+ 4Bb1)br + 4sCbr−p

+ (B(2b2
1 + 1)+ Ab1)δp,r

]
= 0 (13)

and the energy is

〈8|e−SHeS |8〉 = 2s2zN

(
1

4
A+ b1B

)
. (14)

Using these equations we find for the ground-state energy per spin of thes = 1 system
at the γ = 0 point the value−1.091 79. This compares with a numerical result from
extrapolating rings withN 6 14 of −1.1157± 0.0003. This is a very similar accuracy to
that obtained using SUB2 fors = 1

2 at the same point.
There are similar modifications to the bra-state equations, which become

∂H̄

∂br
= 4s2N

∑
p

[
8s2B

∑
r ′
b̃r ′br ′−r+p − 2s(A+ 4Bb1)b̃r + 4sCb̃r−p

+ (B + (A+ 4Bb1)b̃1− 8sB
∑
r ′
b̃r ′br ′)δp,r

]
= 0. (15)

Finally the magnetization is given by

M = −1

s
〈9̃|szl |9〉 = 1− 4s

∑
r

b̃rbr . (16)

5. The LSUBn approximation

The LSUBn scheme contains all possible (connected and disconnected) terms inS which
are contained within a ‘locale’ of sizen. We use all possible connected configurations of
n spins to define this locale; in 1D we may see that this locale is simply a chain of length
n. Disconnected and connected configurations of fewer thann spins are then generated
by successively removing sites from the original connected configurations ofn spins, thus
covering all possibilities. The lowest-order LSUBn approximation scheme is the LSUB2
(i.e. SUB2-2) approximation in which only a single nearest-neighbour, two-body term is
retained inS. We note that the Hamiltonian of equation (2) includes products of the spin
operators which contain even numbers of these spin operators only. This means that the
ground state contains only even numbers of spin flips with relation to the model state.
We restrict the LSUBn approximation to including only those configurations which contain
an even number of spin-raising operators. A further restriction is that eachfundamental
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configuration must be independent of all others under the symmetries of both the lattice and
the Hamiltonian; we note that both the lattice and the Hamiltonian have identical symmetries
for theXY -model.

Figure 3. Results for the CCM ground-state
energy of the square-latticeXY -model. All of the
approximation schemes have terminating points
except LSUB2.

Table 3. The ground-state energy and sublattice magnetization for the cubic-latticeXY -
model atγ = 0. Nf indicates the number of fundamental configurations for a given LSUBn

approximation level, and also shown are the critical values ofγ for the anisotropic model—where
the value in parentheses is the estimated error in the final decimal place shown.

LSUBn Nf Eg/N M γc(n)

LSUB2 1 −0.786 866 0.971 488 —
SUB2 — −0.790 901 0.958 282−0.016 66(1)
LSUB4 13 −0.791 224 0.958 648−0.172(1)
LSUB6 327 −0.791 702 0.954 759−0.071(1)
LSUB∞ — −0.792 01 0.948 0.01(1)

Tables 1, 2, and 3 show the numbers of fundamental configurations for given LSUBn

approximation level, and we can see from these tables that the number of configurations
grows very rapidly withn. Hence, for higher-order approximations we need to enumerate
all possible configurations computationally, and we furthermore need to obtain and solve
the CCM LSUBn equations computationally also. A full explanation of the computational
method used here is given by Zenget al (1997). It is now possible to obtain values for
the ground-state energy and sublattice magnetization for the LSUBn approximation scheme.
Results for these quantities are given in figures 1, 2, 3, and 4, and results at the isotropic
point of γ = 0 are given in tables 1, 2, and 3. A simple extrapolation of the ground-state
energy and sublattice magnetization has also been carried out by plotting the ground-state
energy against 1/n2 and the sublattice magnetization against 1/n, and then performing
polynomial fits on these data. The extrapolated LSUB∞ results obtained from this simple,
‘naive’ approach are shown in tables 1, 2, and 3. The results are clearly at least as good
as are obtained by series expansion. Results in 2D and 3D are especially valuable since no
exact results are available.

Another consequence of this approximation scheme is that the second derivative of the
ground-state energy is found to diverge for somecritical value of the anisotropy parameter,
denotedγc(n), in 2D and 3D only. These points are related to phase transitions of the true



7608 D J J Farnell et al

Figure 4. Results for the CCM ground-state sublattice
magnetization of the square-latticeXY -model.

ground state of the system (Zenget al 1997), and the results for given LSUBn approximation
levels are shown in tables 2 and 3. We note that criticalγc(n) approachesγ = 0, the point
at which the true phase transition point is believed to lie (in all dimensions), with increasing
approximation level. Again, a simple extrapolation of the LSUBn critical points is attempted
by plotting γc(n) against 1/n2, as was done by Bishopet al (1994), and the extrapolated
results are also shown in tables 2 and 3.
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